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LETTER TO THE EDITOR

Packing of spheroids in three-dimensional space by
random sequential addition

J D Sherwood
Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, UK

Received 8 September 1997

Abstract. Packings of spheroidal particles with semi-axes of length(a, b, b) were generated
by random sequential addition (RSA) simulations. As the jamming limit is approached, the
volume fraction occupied by particles tends towards an asymptoteφ∞, which was determined
as a function of aspect ratioα = a/b. This asymptoteφ∞ has a local minimum atα = 1
(spheres), with local maxima atα ' 1.4 (prolate spheroids) andα ' 0.7 (oblate). Values of
φ∞ agree with results from RSA simulations of sphere packings, but lie below volume fractions
obtained in simulations of near-spheres packed under gravity. Volume fractions reported for
simulations of spheroids packed under gravity vary widely when the aspect ratioα is very large
or small; differences between these results and the predictions of RSA are discussed.

1. Introduction

The macroscopic properties of a granular or fibrous material are strongly influenced by the
arrangement of the constituent particles. The arrangement of packed spherical particles has
been the subject of many experimental and theoretical investigations [1], but the packing
of non-spherical particles in three dimensions has been much less studied. The maximum
volume fraction of particles will depend not only on the size distribution and shape of
the particles, but also on the method by which the packing is achieved. Experiments
to determine the volume fraction of packed rods are reviewed in [2, 3], and Philipse [3]
provided an asymptotic analysis for long slender rods. Buchalter and Bradley [4] performed
simulations of oblate and prolate spheroids poured into a box under gravity. Coelhoet al [5]
studied the geometrical and transport properties of beds of spheroids, cylinders and cuboids
formed by simulations of particles packed one-by-one under gravity.

The simulations described here generated three-dimensional packings of spheroids by
random sequential addition (RSA). Two-dimensional RSA, usually described as random
sequential adsorption, is reviewed in [6]. Simulations of the adsorption of ellipses and
other non-spherical shapes on a plane surface are reported in [7–12], and the adsorption
of three-dimensional spheroids on a plane is described in [13]. Three-dimensional RSA
studies of sphere packings have been reported [14]. The qualitative features of the packing
densities obtained here, as a function of particle aspect ratio, are similar to those observed
in [4], but the densities achieved are different. In three dimensions, RSA is not physically
realizable, since it requires particles to be placed in positions which are entirely surrounded
by particles previously deposited. Nevertheless, it is of interest because of the absence of
gravity and of any consequential anisotropy.
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2. Procedure and results

We consider spheroids with axes of length(2a, 2b, 2b) in a cube of sideL. The spheroids
were placed one at a time in the initially empty cube, which had periodic boundary
conditions. The position of the centre of each spheroid was chosen by means of three
random numbers uniformly distributed over(0, L). The orientation of the axis of symmetry
of the spheroid in polar coordinates(θ, φ) was given by two random numbers chosen such
that θ fell within (θ, θ + δθ) with probability sinθ δθ , andφ was uniform in(0, 2π). If
the newly positioned spheroid overlapped any of those previously placed (or any of their
periodic images), all five random numbers were discarded, and the process was started
again. If no overlaps were detected [15], the new spheroid was accepted, and fixed in its
position. As the packing became denser, the probability that a particle was placed without
overlapping became smaller, and the volume fractionφ occupied by particles eventually
approached an asymptoteφ∞. In one dimension (parking on a line) the RSA process is
well understood (see [6]). In two dimensions it is known that the area coverage of circular
disks dropped on a plane approaches the asymptote with an error∝ t−1/2, wheret is a time-
like variable counting the number of trials [16, 17]. If the particles are not circular, the
asymptote should be approached ast−1/3, but in practice it can be difficult to observe this
approach rate in simulations [7]. Indeed, the large-t behaviour for lines adsorbed on a plane
found in [9] subsequently proved to be incorrect when longer simulations were performed
[10, 11]. Although the rate of approach to the asymptote has been successfully used to find
φ∞ by extrapolation [18], it was here considered more prudent to use simulations with a
small box size, and a large number of trials, in order to minimize the extrapolation. For all
aspect ratiosα = b/a < 15, the box size wasL = 15 max(a, b), with tmax= 1614 431 772
trials. Forα = 15, simulation times were such that it was necessary to reduce the above
value ofL by a factor of 1.26, and the number of trials was reduced by a factor of 2. A
larger simulation sizeL would reduce finite-size effects, but would require considerable
extrapolation, or many more trials, in order to determineφ∞. Buchalter and Bradley
[4] found long-range orientational alignment in their three-dimensional packings, but they
concluded that translational order was short-ranged, with an average crystallite size less
than one semi-major axis length. RSA generates packings with local order determined by
the first few particles deposited, but with no long-range orientational ordering, as is easily
seen in two-dimensional simulations [9]. Thus, the choiceL = 15 max(a, b) should be
ample to avoid effects of long-range ordering. Tests to verify that changes inL made little
difference to the results which are reported below.

For each value of the aspect ratio,N = 8 simulations were performed, and the
average volume fractionφ was determined, together with an estimate of the variance
σ 2 = ∑N

i=1(φi − φ)2/(N − 1). Results were extrapolated by an amount1φ by seeking a
value ofφ∞ such that a plot of log(φ∞−φ) against log(t) was approximately straight: this
assumes that the asymptoteφ∞ is approached as some power lawtγ . Results are given in
table 1. In general, the amount of extrapolation was smaller than the standard deviationσ

at aspect ratios close to 1, and larger at the extreme aspect ratios. The final estimates for
φ∞ are shown in figure 1. In the text we quoteφ∞ ± σ , using the standard deviationσ at
t = tmax.

When the particles are spheres, the valueφ∞ = 0.382±0.003 obtained here is consistent
with the value 0.382± 0.0005 found by Talbotet al [14]. This is lower than standard
results for the volume fraction in loose random packing (0.609< φ < 0.625) and dense
random packing (0.625 < φ < 0.641) quoted in [19], and is also lower than the value
φ = 0.46 obtained by Buchalter and Bradley [4] by numerical simulation. If the box size
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Figure 1. The maximum RSA volume fractionφ∞, as a function of aspect ratioα = a/b.

L is reduced by a factor of 1.26, and the number of trialstmax by a factor of 2, we obtain
φ∞ = 0.383± 0.004. If L is reduced by a factor of 2, andtmax by a factor of 8, then
φ∞ = 0.387± 0.02. For oblate spheroids, withb/a = 10, simulations in the standard box
of sideL = 15b lead toφ∞ = 0.261± 0.002. If L is reduced by a factor of 1.26, andtmax

by a factor of 2, we obtainφ∞ = 0.260± 0.002. If L is reduced by 2, andtmax by 8, then
φ∞ = 0.271± 0.003 after extrapolation by an unacceptably large1φ = 0.012. The major
effect of reducing the simulation size is an increase in the uncertainty due either to a higher
standard deviationσ or to increased extrapolation1φ. The results given in table 1 suggest
that these uncertainties have been adequately controlled by the values ofL, tmax used here.

When the particles are slightly non-spherical,φ∞ reaches maxima at aspect ratios
a/b ' 1.4 (prolate spheroids) ora/b ' 0.7 (oblate). This behaviour has been seen in
two-dimensional RSA simulations [8, 9, 12]. It was also observed in the three-dimensional
simulations of Buchalter and Bradley [4], although their maxima are much larger (φ ' 0.49
oblate,' 0.48 prolate). Buchalter and Bradley appeal to arguments based on minimization
of gravitational potential energy which cannot be applied here. The corresponding local
minimum in the packing fraction when the particles are spherical is not apparent in the
results of Coelhoet al [5]. However, their packing fractionφ = 0.598 for spheres is much
closer to accepted values for random packing, and is higher than the values obtained either
by RSA, or in [4]. There is therefore less scope for an increase in the packing fraction
when their particles become non-spherical.

Buchalter and Bradley [4] foundφ ' 0.29 for oblate spheroids withb/a = 8. This is
close to the packing fractionφ∞ obtained by RSA. Coelhoet al [5] found a much higher
packing fraction (approximately 0.6), and explained that this was due to the high degree of
orientational ordering of their oblate spheroids. Their volume fractions for beds of disk-like
cylinders, which were less ordered than the oblate spheroids, were only slightly higher than
those obtained here.

The RSA volume fractionsφ∞ for prolate spheroids agree reasonably well with those of
spheroids and cylinders reported in [5], and with experimental results from figure 1 of [3].
However, Buchalter and Bradley [4] foundφ ' 0.06 at an aspect ratioa/b = 8, compared
with the value 0.28 found by RSA. The origin of their small volume fraction for prolate
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Table 1. The estimated maximum packingφ∞ generated by RSA as a function of aspect ratio
α−1 = b/a. The maximum mean volume fraction was extrapolated by an amount1φ in order
to reach the valueφ∞. The standard deviationσ is that of the volume fraction att = tmax.

b/a φ∞ 1φ σ

0.067 0.201 0.004 0.0003
0.1 0.254 0.005 0.0004
0.2 0.336 0.004 0.0006
0.3 0.373 0.003 0.0008
0.4 0.393 0.002 0.001
0.5 0.402 0.001 0.002
0.6 0.405 0.001 0.003
0.7 0.406 0.001 0.003
0.8 0.399 0.001 0.004
0.9 0.391 0.0 0.004
1.0 0.382 0.001 0.003
1.2 0.398 0.001 0.007
1.3 0.404 0.001 0.004
1.5 0.411 0.002 0.005
1.7 0.409 0.001 0.002
2.0 0.408 0.001 0.003
3.0 0.385 0.004 0.002
4.0 0.358 0.002 0.002
5.0 0.334 0.003 0.003
6.0 0.314 0.002 0.001
7.0 0.298 0.002 0.002
8.0 0.285 0.003 0.002
9.0 0.273 0.004 0.002

10.0 0.261 0.003 0.002
11.0 0.252 0.004 0.002
12.0 0.241 0.003 0.001
15.0 0.220 0.003 0.001

spheroids is unknown.
The probability that particles touch in packings generated by RSA is zero, and so there

is scope for minor re-arrangement of particles if gravity is switched on. This would tend
to suggest that RSA packings of spheres will be less dense than random loose packings
created in a gravitational field. However, when the particle aspect ratio is large (or small),
the packing volume fraction is small, and only a small proportion of the pore space is
contained in narrow gaps between non-touching particles. Minor re-arrangements caused
by the application of gravity will lead to only a small change in the packing volume fraction.
Differences between RSA and packings made under gravity are more likely to be due to
anisotropy caused by the vertical gravitational field.

Philipse [3] observed that the experimental random packing volume fraction of rods with
diameter 2b and length 2a was approximatelyφ ' 5.4b/a for a/b > 15. One of the aims
of the current study was to test this asymptote, but computation times became excessive as
the particle aspect ratio became either very large or very small. At the maximum aspect
ratio a/b = 15 studied here, RSA leads to a volume fractionφ∞ = 0.20, lower than the
value 0.36 predicted by the Philipse correlation. If we assume that the effect of changing
from Philipse’s cylinders to spheroids is merely to reduce the particle volume by a factor
2/3, without changing the particle number density, the amended Philipse correlation predicts
φ = 0.24.
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In two dimensions the packing of ellipses with aspect ratioα = a/b is identical to that
of ellipses with aspect ratioα−1, but this correspondence does not hold between prolate
and oblate spheroids in three dimensions. Nevertheless, there is an approximate symmetry
between values ofφ∞ for spheroids of aspect ratioα andα−1, as can be seen from figure 1.
This supports Philipse’s suggestion [3] that the curve of volume fraction against aspect ratio
should be approximately symmetrical aboutα = 1.

A Philipse is thanked for stimulating discussions, and for showing the experimental systems
reported in [3].
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